8 research outputs found

    How do Financial Institutions in China Mitigate Risks in Securitization Markets?

    Get PDF
    Asset securitization as the essential financial tool has increased the liquidity of underlying assets and promoted rapid economic development. In 2008, the outbreak of Subprime Mortgage Crisis that brought by the collapse of securitization triggered the U.S. securitization market to realize the risks involved in structured financial products, and thus facilitated the development of risk controlling tools. Through the analysis of securitization process, drivers, and credit rating agencies, the study concentrates on the formation of risks and modeling evaluation with evidence in both China and the U.S. markets. Statistical analysis was conducted on Chinese securitized products combining with risk management models built in the U.S. market. The results not only show risk evaluation tools that could improve the market maturity but also reveals the lack of information disclosure in China with the limited access to historical data. The paper attempts to address policy recommendations on mitigating potential risks and promoting financial developments in the China securitization market

    Quantifying the Effect of Land Use Change and Climate Variability on Green Water Resources in the Xihe River Basin, Northeast China

    No full text
    Based on a land use interpretation and distributed hydrological model, soil and water assessment tool (SWAT), this study simulated the hydrological cycle in Xihe River Basin in northern China. In addition, the influence of climate variability and land use change on green water resources in the basin from 1995 to 2015 was analyzed. The results show that (1) The ENS (Nash-Sutcliffe model efficiency coefficient) and R2 (coefficient of determination) were 0.94 and 0.89, respectively, in the calibration period, and 0.89 and 0.88, respectively, in the validation period. These indicate high simulation accuracy; (2) Changes in green water flow and green water storage due to climate variability accounted for increases of 2.07 mm/a and 1.28 mm/a, respectively. The relative change rates were 0.49% and 0.9%, respectively, and the green water coefficient decreased by 1%; (3) Changes in green water flow and green water storage due to land use change accounted for increases of 69.15 mm and 48.82 mm, respectively. The relative change rates were 16.4% and 37.2%, respectively, and the green water coefficient increased by 10%; (4) Affected by both climate variability and land use change, green water resources increased by 121.3 mm and the green water coefficient increased by 9% in the Xihe River Basin. It is noteworthy that the influence of land use change was greater than that of climate variability

    Bone-inspired (GNEC/HAPAAm) hydrogel with fatigue-resistance for use in underwater robots and highly piezoresistive sensors

    No full text
    Abstract A novel bone-inspired fatigue-resistant hydrogel with excellent mechanical and piezoresistive properties was developed, and it exhibited great potential as a load and strain sensor for underwater robotics and daily monitoring. The hydrogel was created by using the high edge density and aspect ratio of graphene nanosheet-embedded carbon (GNEC) nanomaterials to form a three-dimensional conductive network and prevent the expansion of microcracks in the hydrogel system. Multiscale progressive enhancement of the organic hydrogels (micrometer scale) was realized with inorganic graphene nanosheets (nanometer scale). The graphene nanocrystals inside the GNEC film exhibited good electron transport properties, and the increased distances between the graphene nanocrystals inside the GNEC film caused by external forces increased the resistance, so the hydrogel was highly sensitive and suitable for connection to a loop for sensing applications. The hydrogels obtained in this work exhibited excellent mechanical properties, such as tensile properties (strain up to 1685%) and strengths (stresses up to 171 kPa), that make them suitable for use as elastic retraction devices in robotics and provide high sensitivities (150 ms) for daily human monitoring

    Transcriptomic Analysis Revealed Key Defense Genes and Signaling Pathways Mediated by the <i>Arabidopsis thaliana</i> Gene <i>SAD2</i> in Response to Infection with <i>Pseudomonas syringae</i> pv. Tomato DC3000

    No full text
    Nucleocytoplasmic transport receptors play key roles in the nuclear translocation of disease resistance proteins, but the associated mechanisms remain unclear. The Arabidopsis thaliana gene SAD2 encodes an importin β-like protein. A transgenic Arabidopsis line overexpressing SAD2 (OESAD2/Col-0) showed obvious resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) compared to the wild type (Col-0), but the knockout mutant sad2-5 was susceptible. Transcriptomic analysis was then performed on Col-0, OESAD2/Col-0, and sad2-5 leaves at 0, 1, 2, and 3 days post-inoculation with Pst DC3000. A total of 1825 differentially expressed genes (DEGs) were identified as putative biotic stress defense genes regulated by SAD2, 45 of which overlapped between the SAD2 knockout and overexpression datasets. Gene Ontology (GO) analysis indicated that the DEGs were broadly involved in single-organism cellular metabolic processes and in response to stimulatory stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) biochemical pathway analysis revealed that many of the DEGs were associated with the biosynthesis of flavonoids and other specialized metabolites. Transcription factor analysis showed that a large number of ERF/AP2, MYB, and bHLH transcription factors were involved in SAD2-mediated plant disease resistance. These results provide a basis for future exploration of the molecular mechanisms associated with SAD2-mediated disease resistance and establish a set of key candidate disease resistance genes
    corecore